Demonstrating Hearing Aid Compatibility (HAC) is important for warranting the electromagnetic and operational compatibility of hearing aids and wireless devices. In February 2021, the Federal Communication Commission (FCC) announced the adoption of the 2019 edition of ANSI C63.19, the “American National Standard Methods of Measurement Compatibility Between Wireless Communications Devices and Hearing Aids,” which became effective June 4, 2021. The FCC is giving manufacturers a two-year transition period (i.e., until June 4, 2023) to adopt the requirements of the updated ANSI C63.19-2011 standard. It has also extended the volume control deadline to match this transition period. Beginning June 5, 2023, only test reports that comply with ANSI C63.2019 will be accepted.
Following SPEAG’s tradition of staying ahead of requirements, we started early with the development of Module HAC2019 for DASY8/6 users. This is a completely new software solution based on SPEAG’s latest graphical user interface technology that guides users through the compliance workflow by using specific Jupyter Notebooks. The DASY8/6 system is interfaced via a dedicated application programming interface.
During development, we have been meticulous in ensuring that we reuse as much as possible of the previous HAC hardware in order to save resources and costs for our customers. The only element that has been replaced is the audio interference analyzer (AIA), which has been superseded by the modulation and audio interference analyzer (MAIA) to evaluate the modulation interference factor (MIF).
DASY8/6 Module HAC2019 consists of four Jupyter Notebooks that represent the different steps of the compliance workflow:
The workflow can easily be implemented, as shown in this video:
The MAIA allows verification of the MIF values used to calculate the RFail. The MAIA can be operated over the air interface using the built-in ultra-broadband planar log spiral antenna (supported frequency range: 698–6000 MHz) or in conducted mode using the coaxial SMA 50 Ω connector (supported frequency range: 300–6000 MHz).
Figure 1: MIF Measurement of a 5G new radio frequency range 1 frequency division duplex signal
A dedicated Notebook has been developed for verifying the RF interference measurement setup. The user can select and optimize the measurement configuration in a list of predefined templates. Peak values are automatically detected for easy comparison with the measurement targets.
Figure 2: Interpolated E-field Distribution of a CD2450V3 Dipole
In Module HAC2019, the RFail is assessed using the (preferred) indirect test procedure described in ANSI C63.19-2019. A 50x50 mm region centered on the speaker location is scanned and the root mean square (RMS) electric field values are recorded at each point. Once the scan is completed, the RFail is obtained by adding the MIF value to the average steady RMS field strength averaged over the measurement area.
Figure 3: Interpolated E-field distribution of a wireless device after MIF scaling
The Jupyter Notebook developed for baseband magnetic T-Coil testing guides the users through the measurement steps described in the ANSI C63.19-2019:
The T-Coil coupling qualifying strengths, including determination of the primary and secondary groups, as well the magnetic field frequency response are computed by the post-processor and are available for visualization and reporting.
Figure 4: Evaluation of Primary and Secondary Groups according to ANSI C63.19-2019
The software installer will be available on November 15th.
For further information, please contact us at info@speag.swiss or any of our sales channels.