Swissmade
NEWS
09/11/2021
MEASUREMENT

DASY8 Module HAC2019 (ANSI C63.19-2019)

SPEAG has released DASY8 Module HAC2019. The new module provides a guided workflow that demonstrates the compliance of any wireless device with the latest Hearing Aid Compatibility standard ANSI C63.19-2019 and the latest Federal Communication Commission requirements. Module HAC2019 is also available for DASY6.

Demonstrating Hearing Aid Compatibility (HAC) is important for warranting the electromagnetic and operational compatibility of hearing aids and wireless devices. In February 2021, the Federal Communication Commission (FCC) announced the adoption of the 2019 edition of ANSI C63.19, the “American National Standard Methods of Measurement Compatibility Between Wireless Communications Devices and Hearing Aids,” which became effective June 4, 2021. The FCC is giving manufacturers a two-year transition period (i.e., until June 4, 2023) to adopt the requirements of the updated ANSI C63.19-2011 standard. It has also extended the volume control deadline to match this transition period. Beginning June 5, 2023, only test reports that comply with ANSI C63.2019 will be accepted.

Following SPEAG’s tradition of staying ahead of requirements, we started early with the development of Module HAC2019 for DASY8/6 users. This is a completely new software solution based on SPEAG’s latest graphical user interface technology that guides users through the compliance workflow by using specific Jupyter Notebooks. The DASY8/6 system is interfaced via a dedicated application programming interface.

During development, we have been meticulous in ensuring that we reuse as much as possible of the previous HAC hardware in order to save resources and costs for our customers. The only element that has been replaced is the audio interference analyzer (AIA), which has been superseded by the modulation and audio interference analyzer (MAIA) to evaluate the modulation interference factor (MIF).

DASY8/6 Module HAC2019 consists of four Jupyter Notebooks that represent the different steps of the compliance workflow:

  • MIF measurements with MAIA
  • Simplified verification of the radiofrequency (RF) test setup using RF emission calibration dipoles
  • Evaluation of the wireless device RF interference potential by determining the RF audio interference level (RFail)
  • Measurement of the baseband (audio frequency) magnetic T-Coil (Tele-Coil) signal from a wireless device.

The workflow can easily be implemented, as shown in this video:

MIF Measurements with MAIA

The MAIA allows verification of the MIF values used to calculate the RFail. The MAIA can be operated over the air interface using the built-in ultra-broadband planar log spiral antenna (supported frequency range: 698–6000 MHz) or in conducted mode using the coaxial SMA 50 Ω connector (supported frequency range: 300–6000 MHz).

MIF

Figure 1: MIF Measurement of a 5G new radio frequency range 1 frequency division duplex signal

RF Test Setup Verification

A dedicated Notebook has been developed for verifying the RF interference measurement setup. The user can select and optimize the measurement configuration in a list of predefined templates. Peak values are automatically detected for easy comparison with the measurement targets.

SystemCheck

Figure 2: Interpolated E-field Distribution of a CD2450V3 Dipole

RF Audio Interface Level Determination

In Module HAC2019, the RFail is assessed using the (preferred) indirect test procedure described in ANSI C63.19-2019. A 50x50 mm region centered on the speaker location is scanned and the root mean square (RMS) electric field values are recorded at each point. Once the scan is completed, the RFail is obtained by adding the MIF value to the average steady RMS field strength averaged over the measurement area.

RF

Figure 3: Interpolated E-field distribution of a wireless device after MIF scaling

Baseband Magnetic T-Coil Signal

The Jupyter Notebook developed for baseband magnetic T-Coil testing guides the users through the measurement steps described in the ANSI C63.19-2019:

  • Validation of the measurement equipment using a telephone magnetic field simulator (TMFS) or a Helmholtz coil
  • Determination of the wireless device drive levels for each audio signal
  • Measurement of the desired magnetic field with a voice-like signal (desired audio band magnetic (ABM) signal)
  • Measurement of the frequency response at the maximum location of the desired ABM signal
  • Measurement of the undesired broadband audio magnetic signal (undesired ABM signal)

The T-Coil coupling qualifying strengths, including determination of the primary and secondary groups, as well the magnetic field frequency response are computed by the post-processor and are available for visualization and reporting.

Groups2

Figure 4: Evaluation of Primary and Secondary Groups according to ANSI C63.19-2019

The software installer will be available on November 15th.

For further information, please contact us at info@speag.swiss or any of our sales channels.

 

CORPORATE

10/06/2019

Contact
info@speag.swiss

 

5G Solutions Exhibited at IEEE MTTS-IMS 2019 in Boston

SPEAG showcased a range of new high-performance smart products explicitly designed to cover 5G technologies at IEEE MTT-S 2019 International Microwave Symposium in Boston, USA.

 
MEASUREMENT

06/06/2019

Contact
info@speag.swiss

 

Release of DASY52.10.2 Software Update

SPEAG announces release of the DASY52 software release with final implementation of scanning requirements as per IEC 62209-2 amendment 

 
CORPORATE

30/05/2019

Contact
info@speag.swiss

 

Annual Z43-Auden Workshop Series in China and Taiwan: 14th Edition a Great Success!

AUDEN Technology Corporation, together with SPEAG and ZMT Zurich MedTech AG, hosted our popular annual hardware & software workshop series in China and Taiwan in June 2019. Almost 300 participants from industry and academia were introduced to Z43's latest solutions for exposure evaluation and compliance testing from wireless power transfer to 5G mmWave applications.

 
MEASUREMENT

22/05/2019

Contact
info@speag.swiss

 

FCC Update on MAIA usage in cDASY6

We are pleased to announce that SPEAG received FCC's official confirmation on full acceptance of MAIA as well as further guidance on the reporting.

 
MEASUREMENT

20/05/2019

Contact
info@speag.swiss

 

Release of cDASY6 Module mmWave V1.6.2

SPEAG announces release of the intermittent cDASY6 Module mmWave V1.6.2.

 
MEASUREMENT

16/04/2019

Contact
info@speag.swiss

 

First Whole-Body Phantom WBBDuke for DASY6

With the release of whole-body back phantom WBBDuke, SPEAG’s DASY6 is ready to demonstrate SAR compliance in specific phantoms for any IoT devices.

 
MEASUREMENT

01/04/2019

Contact
info@speag.swiss

 

mmWAVE Phantom for DASY6 Systems

SPEAG released the mmWAVE phantom in direct response to the need for evaluating the power density distributions on any of the six faces of wireless devices.

 
MEASUREMENT

26/03/2019

Contact
info@speag.swiss

 

Update from FCC on 5G NR sub-6GHz NSA SAR Measurements

SPEAG is committed to continuously supporting and guiding the wireless industry through the rapid 5G development. 

 
CORPORATE

01/03/2019

Contact
info@speag.swiss

 

SPEAG Exhibition at MWC19 in Barcelona

Busy times at the SPEAG booth at the Mobile World Congress in Barcelona where our experts discussed the measurement needs of our customers on simulation tools to verification of electromagnetic nearfield measurement problems.

 
MEASUREMENT

19/02/2019

Contact
info@speag.swiss

 

Release of cDASY6 Module mmWave V1.6

SPEAG released the cDASY6 Module mmWave V1.6 with many small but important new features that make compliance testing and documentation easier and faster.

 
Page 6 of 31
 
 
Latest News