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INTRODUCTION

The most successfully used technique in electromagnetic (EM)
computations is the Finite-Difference Time-Domain method
(FDTD, Yee 1966). However, a well known deficiency is that
the staircased meshing can lead to inaccuracies in the geometrical
discretization of complex models. Conformal meshing and
locally (near material interfaces) modified Yee update schemes
can be used to overcome this deficiency. However, for the
processing of complex simulation settings key issues such as
the robustness of the conformal mesher and stability of the
modified Yee scheme need to be addressed.

OBJECTIVES

The objectives of this study thus were the development and
implementation of novel and robust 3-D CAD analysis
algorithms for the fully automated generation of locally
conformal FDTD meshes from arbitrarily complex geometries.
Furthermore the additional geometric information is
incorporated into the FDTD updating algorithm to achieve the
same accuracy on a coarser grid, generating substantial savings
in simulation time and memory consumption [2-4]. Finally, all
schemes were integrated into the EM simulation platform
SEMCAD X [5].

METHOD: CAD BASED GENERATION OF
CONFORMAL FDTD MESHES

In particular for complex geometries, there is a strong need to
automate the material property assignement to each
computational cell. In the literature several attemps have been
made (e.g., [6]) to use CAD data to extract the cell’s material
properties. The CAD data consists of a surface triangle
description of the scenery to simulate. The result is a
(conformal) object description of the scenery on the
computational grid.

The addressed and presented problems are the algorithmic
complexity and the handling of special cases as well as
numerical difficulties with poorly shaped triangles. The
difficulties are the same for staircasing and conformal
discretization.

Overview of the Discretization

The grid lines are intersected with triangle mesh representing
the object’s surface. Each grid line thus knows if and where the
object is hit. With the very efficient scan line conversion algorithm
(computer graphics, Figure 4) all necessary data (dielectric
staircasing voxels, staircasing PxC voxels, conform voxels) can
be extracted out of these hit-points (called entry and exit point).

Tolerances and Special Cases

The intersection calculation of a grid line with poorly shaped
surface triangles can lead to significant numerical errors. The
calculation is therefore performed with tolerances, e.g., with a
tolerance strip around the triangle (see surface triangle in
figure 5).

An additional benefit of the tolerance strip is to avoid
distinguishing between different cases when the grid line is
tangential to the surface triangle. In the literature (e.g., [6],
virtual gridlines) it is distinguished between the cases depicted
in Figure 5. The tolerance strip enables easy but symmetric and
robust discretization without differentiating special cases. The
algorithm only investigates the entry/exit point pattern.

Examples & Benchmarks

The capabilities of the conformal FDTD mesh generator have
proven its general versatility in a wide range of real-world
applications. In Figure 2 a human model (head, hand) and mobile
phone is shown, modeling the real-world situation of a phoning
person. Figure 3 demonstrates the complexity of single parts of
a commercial mobile phone model (antenna and case). Figure
1 shows a very detailed hearing aid model.
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Figure 1: CAD representation, staircasing and conformal discretization of a
commercial hearing aid with more than one hundert subparts, a grid of
49x130x145, approximately 200000 surface triangles, conformally voxeled in
12 seconds on a P4, 2.8GHz.
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Figure 2: Staircasing and conformal discretizations using the same mesh sizes: SAM head, hand and mobile phone
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Figure 3: CAD representation, staircasing and conformal discretization of a commercial mobile phone with more than one hundert subparts, a grid of 166x426x186
and approximately 250000 surface triangles, conformally voxeled in 80 seconds on a P4, 2.8GHz.
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Figure 4: Scan conversion algorithm: the entry and exit points of an object hit
by a grid line define the cells which are completely (dark blue) or partially
(light blue) inside the object. Regardless of how many cells are between the
entry and exit points, this kind of assignment scales according to the surface
size instead of the object’s volume size and thus the complexity is reduced. The
technique can be used to assign a cell to its object, an edge to its object or a
cut pattern of a conformal cell.
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Figure 5: In the literature (e.g., [6]) it was reported that the two cases depicted

in this figure needed to be handled differently . With a tolerance stip around
the triangle (red) this problem is easily solved by looking at the entry/exit point
pattern. If two entry points are in the list, then only the first one ist considered;

if an exit point follows, all is fine. The technique is symmetrical and robust, and

no special treatment is necessary. Furthermore the numerical inaccuracies are
overcome without any additional effort.

METHOD: CONFORMAL FDTD

The conformal discretization described in the first section is the
basis for conformal FDTD simulations. The additional geometric
information is incorporated into the FDTD algorithm to reduce
the material assignment based error while keeping the spatial
resolution and its corresponding errors. In the literature several
attempts have been made to enhance accuracy [2,3,4].

The cited methods enhance the accuracy considerably; however
some important details require improvement:

» modifications of the update stencil, e.g., split curl-coefficients
(see equation (1))

» more multiplications per time step than conventional FDTD
updating

¢ higher memory consumption than the conventional FDTD
updating

* stability criterion: only guidelines based on experiments

A new conformal FDTD method [7] has been derived which
overcomes these limitations.
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Figure 6: A loop for Faraday's law using the conventionally staggered grid.
The lengths and area are the metal free parts.




Precision and Derived Stability Criterion
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Proposed Updating Scheme

In every conformal FDTD algorithm the magnetic field update
is modified according to Faraday’s law in the following way
(commonly used staggered FDTD grid notation [1]):
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where E and H denote the electric and magnetic fields, At is the
time step, n denotes the time step index, i, j, k are the spatial
indices, u denotes the permeability, and / and 4 are the PEC
free length and area, respectively. This equation is used directly
in the Dey-Mittra PEC model [2] (the conventional curl-
coefficient (A#/u) is split into four coefficients).

Same E-Field Prefactor

Considering a single electric edge
Ey and all cell faces containing that
edge the conformal FDTD equation
(1) always describes the same
prefactor /. Storing the product Ey
times /y instead of simply Ey avoids
the split coefficients.

Modifications to Conventional FDTD Update

To recover the conventional FDTD time update equations the
following modifications needs to be applied
fi = 1+ Aratio Br(At) == Br(At) - AR

where 3 is the conventional FDTD coefficient in front of the
curl of the H field.

Speed Versus Accuracy

A big advantage of the proposed conformal FDTD algorithm is
that a time step reduction can be mathematically derived:

(2) AtZEC model __

where At, is the conventionally calculated time step of that area
A. The limiting factor in equation (2) is the reduced area 4.
Solving equation (2) for A" and setting an acceptable time
step Aty S ™ results in the lowest limit of 4%, If this limit is
larger than the true area reduction, then the true area is
increased to this limit to guarantee stability. Furthermore, the
user has the possibility to favor either speed or accuracy

depending on the acceptable timestep.
Optimal Timestep

The proposed scheme optimally connects a given time step with
the achievable geometric precision:

1) Nonuniform Grid: On nonuniform grids the conventional
local time step of cell faces can vary a lot throughout the grid.
Therefore, a conformal coarse cell can incorporate a larger
decrement of the conventional local time step and still satisfies
the global time step. Hence, without any drawback a coarse cell
can be conformally resolved more accurately than a smaller cell.

2) Different Surrounding Dielectrics: 1f the metal object is
touching two different dielectrics, the dielectric with the larger
permittivity has again a larger conventional local time step for
the same cell size. Therefore, it is again conformally resolved
more accurately with the presented scheme than the cells with
the dielectric with the smaller permittivity.

3) Small Largest Dielectric Edge Length in Cell’s Face: The
case of a small area fractions below is considered:

Even if the cell is the smallest of the grid and the time step is
not reduced (CFL = 1), the area 4 can be decreased (YM [3]
uses always 4" = 1) because the maximal metal-free edge ratio
max A;‘g;,‘; is less than one (see equation (2)). Again the best
geometric precision for a given time step is used in that cell.
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Figure 7: L near field error on a grid Ax = N46.2. The scheme presented
here shows that the user can tradeoff speed versus accuracy with the chosen
CFL number. The improvements of the conformal FDTD method compared to
the conventional one are obvious. The YM [3] scheme improves the accuracy
compared to the staircased solution. However the proposed scheme with
CFL = 1 can profit more from small cells. Using the DM [2] scheme, the
accuracy can be improved even more. However, it suffers from example
dependent late time instabilities. The presented scheme profits the most of the
timestep reduction.
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Figure 9: The conform FDTD on the coarse grid simulation gives a return
loss which can be achieved only on fine staircasing simulations: the same ac-
curacy is achieved with conventional FDTD method (18.2 minutes on an Intel
P4, 2.7 GHz, 540 000 cells) as with the conformal one (70% CFL, 0.8 minutes,
18°000 cells)

NUMERICAL RESULTS & BENCHMARKS

In this Section the robustness and effectiveness of the proposed
scheme is demonstrated on the basis of canonical validations as
well as real world applications with increased complexity.

Benchmark 1: Validation With Mie Scattering

To outline the effect of the time step reduction and therefore the
tradeoff of accuracy versus speed, the near and scattered fields
of a metal sphere irradiated by an incident plane wave were
investigated. The analytical solution is calculated by Mie series.
The discrete norm L} (square root of the mean value of squared
differences) was used to compare the simulated E field to the
analytical solution. The near field region (box) has a side length
1.21 A (= 14 cells for the coarsest mesh) around the sphere
center. The sphere’s radius is A/5.77 (= 2 cells for the coarsest
mesh). The relative errors of near field and scattered field on
different grids were subsequently investigated (Figure 7).

Benchmark 2: Low Profile Antenna

The next benchmark consists of the broadband low profile
antenna Figure 8. A circular patch of 21 mm radius is located
at 10 mm above a ground PEC plane. Two 10 mm off-centered
metal rods of 1 mm radius short the patch with the ground plane.
The antenna is excited at the center metal cylinder (radius 2
mm) with an edge source and a 1 mm gap between the cylinder
and the ground plane (see also Fig. 5). The excitation signal was
a sinusoidal Gaussian with a center frequency of 2 GHz and a
bandwidth of 1 GHz. In Figure 9 the return loss is shown. The
reference solution is based on method of moments (MoM). A
significant improvement is achieved by conformal FDTD method
with respect to both memory consumption and simulation time.

Benchmark 3: Mobile Phone

Whereas the previous benchmarks mainly focus on analysis of
accuracy and efficiency of the proposed scheme, this section
shall outline its robustness with respect to highly complex
configurations, e.g., CAD derived devices. In addition, to also
demonstrate its wide application range, a model of a commercially
available mobile phone was chosen and simulated at 1.85
GHz. The CFL reduction for the conformal simulation was
selected as 50% to ensure that the number of time iterations was
not exceedingly high. Figure 10 shows the staircased and
conformal discretization of the joint of the flip phone.

The conformal simulation with 2.8million cells is compared
to a fine staircased simulation with 12.1million cells. The
simulation time was 81minutes for the conformal run and
277 minutes for the staircased run on an Intel P4, 2.7GHz.
The near field RMS [El was plotted on a plane Smm below
the lowest point of the antenna. In Figure 11 the contour plots
of that plane are shown. Along the bright line the relative error
L, of the conformal simulation compared to the fine reference
one is only 2.4%, regarding the reduced computational resources
achieved. Small deviations are also obtained observing the
feedpoint impedance which changes from 45.8 + j 1.07 Q to
45.6 - j 1.45 Q for conformal and fine simulation, respectively.

Figure 8: The CAD model of the broadband low profile antenna is shown. The
excitation (small line) is between the center rod and the PEC ground plane. The
ground plane is not drawn in the picture.

Figure 10: The joint of a flip phone staircased (left) and conformally (right)

voxeled.
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Figure 11: The RMS value of the absolute E field is shown for the conformal
simulation (left) and the fine reference staircase simulation (right).

CONCLUSIONS

The major new contributions on the conformal FDTD updating
scheme can be summarized as follows:

- less memory consumption than [2,3]

- less multiplications per time step than [2,3]

- conventional update equation, but conformally enhanced
update coefficients

- derived stability criterion

- which allows the user to favor either speed or accuracy

- straight forward adaption to hardware accelerated and/or
parallelized FDTD codes, because of conventional update
equations

The novel proposed and implemented conformal meshing
algorithms and the locally conformal FDTD scheme enable
improved spatial modeling and simulation of complex 3-D real-
world structures. They were validated on the basis of benchmark
examples as well as targeting complex industrial applications.
The new methods constitute a significant benefit and performance
increase for electromagnetics related applications in general and
for mobile communication and medicine in particular. With
them, CAD datasets from industrial environments can be imported
and reliably meshed within a few minutes. Moreover, the new
3-D conformal scheme demonstrated orders of magnitude in
reduction of computational runtime and memory requirements,
by maintaining the same order of accuracy.
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