
INTRODUCTION

The most successfully used technique in electromagnetic (EM)
computations is the Finite-Difference Time-Domain method
(FDTD, Yee 1966). However, a well known deficiency is that
the staircased meshing can lead to inaccuracies in the geometrical
discretization of complex models. Conformal meshing and
locally (near material interfaces) modified Yee update schemes
can be used to overcome this deficiency. However, for the
processing of complex simulation settings key issues such as
the robustness of the conformal mesher and stability of the
modified Yee scheme need to be addressed.

OBJECTIVES

The objectives of this study thus were the development and
implementation of novel and robust 3-D CAD analysis
algorithms for the fully automated generation of locally
conformal FDTD meshes from arbitrarily complex geometries.
Furthermore the additional geometric information is
incorporated into the FDTD updating algorithm to achieve the
same accuracy on a coarser grid, generating substantial savings
in simulation time and memory consumption.

METHOD: CAD BASED GENERATION OF
CONFORMAL FDTD MESHES

In particular for complex geometries, there is a strong need to
automate the material property assignement to each
computational cell. In the literature several attemps have been
made (e.g., [4]) to use CAD data to extract the cell’s material
properties. The CAD data consists of a surface triangle
description of the scenery to simulate. The result is a
(conformal) object description of the scenery on the
computational grid.

The addressed and presented problems are the algorithmic
complexity and the handling of special cases as well as
numerical difficulties with poorly shaped triangles. The
difficulties are the same for staircasing and conformal
discretization.

Overview of the Discretization

The grid lines are intersected with triangle mesh representing
the object’s surface. Each grid line thus knows if and where the
object is hit. With the scan line conversion algorithm (computer
graphics, figure 4) all necessary data (dielectric staircasing
voxels, staircasing PxC voxels, conform voxels) can be extracted
out of these hit-points (called entry and exit point).

Speed Optimizations

• Calculation of the intersection points: Instead of finding the
triangles intersecting a grid line (loop over grid lines, normal
approach in computer graphics), all grid lines which intersect
a triangle are determined (loop over triangles). Because of
the rectilinear grid, the latter approach can be implemented
very efficiently.

• Use of scan conversion algorithm ideas (see figure 4): For
example, the computationally relatively expensive algorithm
to determine conformal cells is only performend on those
cells in ‘light blue’ (see figure 4); no other cells are
considered, since conformal cells are not possible in other
locations. This idea is used throughout the code:
- Completing the fourth PxC edge on a face
- Consistency check: verifying that a point crossed by three

perpendicular grid lines is inside the object (or outside)
in each direction.

- etc.

Figure 2:  Staircasing and conformal discretization of a SAM head, hand and a mobile phone with a grid of 127x92x133.
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Figure 5:  In the literature (e.g., [4]) it was reported that the two cases depicted
in this figure needed to be handled differently . With a tolerance stip around
the triangle (red) this problem is easily solved by looking at the entry/exit point
pattern. If two entry points are in the list, then only the first one ist considered;
if an exit point follows, all is fine. The technique is symmetrical and robust, and
no special treatment is necessary. Furthermore the numerical inaccuracies are
overcome without any additional effort.

gridline

entrytriangles with
tolerance

gridline

entry

exit

tolerance

surface
triangle

entry

exit

vertical gridline

ho
riz

on
ta

l g
rid

lin
e

Figure 4:  Scan conversion algorithm: the entry and exit points of an object hit
by a grid line define the cells which are completely (dark blue) or partially
(light blue) inside the object. Regardless of how many cells are between the
entry and exit points, this kind of assignment scales according to the surface
size instead of the object’s volume size and thus the complexity is reduced. The
technique can be used to assign a cell to its object, an edge to its object or a
cut pattern of a conformal cell.

Figure 3:  CAD representation, staircasing and conformal discretization of a commercial mobile phone with more than one hundert subparts, a grid of 166x426x186
and approximately 250000 surface triangles, conformally voxeled in 80 seconds on a P4, 2.8GHz.
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Figure 1:  CAD representation, staircasing and conformal discretization of a
commercial hearing aid with more than one hundert subparts, a grid of
49x130x145, approximately 200000 surface triangles, conformally voxeled in
12 seconds on a P4, 2.8GHz.
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Tolerances and Special Cases

The intersection calculation of a grid line with poorly shaped
surface triangles can lead to significant numerical errors. The
calculation is therefore performed with tolerances, e.g., with a
tolerance strip around the triangle (see surface triangle in
figure 5).

An additional benefit of the tolerance strip is to avoid
distinguishing between different cases when the grid line is
tangential to the surface triangle. In the literature (e.g., [4],
virtual gridlines) it is distinguished between the cases depicted
in figure 5. The tolerance strip enables easy but symmetric and
robust discretization without differentiating special cases. The
algorithm only investigates the entry/exit point pattern. If after
an entry point an exit point follows, all is fine and the left case

is automatically ‘recognized’. If two entry points are next to
each other, the right situation is automatically discretized and
the algorithm does not use the second entry point, but the
following point if it is an exit point.

Examples & Benchmarks

The capabilities of the conformal FDTD mesh generator have
proven its general versatility in a wide range of real-world
applications. In figure 2 a human model (head, hand) and mobile
phone is shown, modeling the real-world situation of a phoning
person. Figure 3 demonstrates the complexity of single parts of
a commercial mobile phone model (antenna and case). Figure
1 shows a very detailed hearing aid model.
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METHOD: CONFORMAL FDTD

The conformal discretization described in the first section is the
basis for conformal FDTD simulations. The additional geometric
information is incorporated into the FDTD algorithm to reduce
the material assignment based error while keeping the spatial
and temporial resolution and its corresponding errors. In the
literature (an overview in [2], state-of-the-art method in [3])
several attempts have been made to enhance accuracy.

Figure 6:  A loop for Faraday’s law using the conventionally staggered grid.
The lengths and area are the metal free parts.

The cited methods enhance the accuracy considerably; however
some important details require improvement:

• modifications of the update stencil, e.g., split curl-
coefficients (see equation (1))

• more multiplications per time step than conventional FDTD
updating

• higher memory consumption than the conventional FDTD
updating

• stability criteria: reduction of the time step without providing
a proven formula (only guidelines based on experiments)

A new conformal FDTD method has been derived which
overcomes these limitations. The details are not presented on
this poster but will soon be submitted to AP.

Proposed Updating Scheme

In every conformal FDTD algorithm the magnetic field update
is modified according to Faraday’s law in the following way
(see figure 6 for the common staggered FDTD grid notation):

where E and H denote the electric and magnetic fields, ∆t is the
time step, n denotes the time step index, i, j, k are the spatial
indices, µ denotes the permeability, and l and A are the PEC
free length and area, respectively. This equation is used directly
in the Dey-Mittra PEC model [3] (the conventional curl-
coefficient (∆t/µ) is split into four coefficients). The proposed
method starts with the same equations but introduces some
definitions to generate a more compact formulation. It combines
ideas from the diagonal split cell [1] and the conformal approach
in the above equation.

Stability

A great advantage of the proposed conformal FDTD algorithm
is that a time step reduction can be mathematically derived and
proven:

Written in a sentence: the conventionally calculated time step
for the considered area (see figure 6) is reduced by the square
root of the ratio of the PEC free area fraction and the maximal
PEC free length ratio belonging to that area.

NUMERICAL RESULTS & BENCHMARKS

It is well known that conformal FDTD has proven its effectiveness
for simulating resonating structures. To demonstrate its
performance on near and scattered fields, Mie scattering was
used to analytically compare the L2 errors (volume integrated
squared difference). The staircasing solution, the diagonal split
cell model [1] and the proposed methods were investigated. The
near and scattered E-field errors were compared to the analytical
solution.

To increase the benchmark complexity and in order to demonstrate
the versatility and robustness of the proposed update scheme,
a real-world dual-band PCS/GPS antenna similar to the one in
[5] was simulated (figure 11).

MIE SCATTERING

In the Mie benchmark simulations a plane wave excition is
placed symmetrically around a sphere with a side length of
approximately two thirds of the wavelength (3GHz was chosen).
The spatial discretization varied from λ/12.5 to λ/100 whereas
the radius varied from 5 (5/8 voxel) to 32mm (4 voxels) depending
on the investigated effect. PML was used as the absorbing
boundary condition. For all simulations the time step was chosen
as 31% of the CFL time step according to equation (2).

Aligned Sphere

The performance of the algorithms was tested on spheres with
radii of a multiple of the coarsest grid step (radius of one, two
and three voxels). The solutions for four uniform grids were
compared (λ/12.5, λ/25, λ/50, λ/100). In figure 7 the near field
and in figure 8 the scattered field of the two-voxel-radius
simulation are presented. For a discussion of the results see the
captions.

Figure 8:  Comparison of the
scattered field. On the coarsest grid
the near to far field transormation
introduces some integration errors.
With the proposed method one can
save two refinements and with the
diagonal split cell method one
refinement. The benefit in simulation
time is again huge.

Figure 7:  Comparison of the near
field. With the proposed method one
can save two refinements and with the
diagonal split cell method one
refinement. The advantage from gains
in memory and simulation time to
achieve the same accuracy is obvious,
recalling that for a uniform grid the
algorithm scales like N4, where N is
the number of elements along a single
axis.

Non-Aligned Sphere

This benchmark compares spheres whose radii are not a multiple
of a grid step. It is expected that the staircasing solution will
depend heavily on the radius whereas the conformal model
should be more constant. See the captions in figures 9 and 10
for a discussion of the results. The main conclusion: the
smootheness of the error versus the radius in the conformal
simulations is an excellent proof of the effectiveness of the
proposed method.

Figure 9:  Comparison of the near
field for different radii but the same
grid resolution (λ/12.5). The
proposed method is more accurate
than the other schemes for every
radius. The error of the proposed
method varies only slightly with the
radius, whereas the accuracy of the
other two schemes strongly depends
on the radius and the staircased
representation.

Figure 10:  Comparison of the
scattered field for different radii but
the same grid resolution (λ/12.5). The
proposed method is more accurate
than the other schemes for every
radius. The error of the proposed
method varies only slightly with the
radius whereas the accuracy of the
other two schemes strongly depends
on the radius and the staircased
representation.

PCS/GPS DUAL-BAND ANTENNA

Within an additional benchmark, a dual-band antenna similar
to the one in [5] was modeled and simulated. The antenna
consists of a metal square ring (lower plate), which radiates in
the GPS band and the upper square with two off-center metal
rods which radiates in the PCS band. The PCS antenna is excited
via a metal rod in the center of the square plate.

Figure 12:  The conform FDTD on the coarsest grid simulation gives a return
loss which can be achieved only on very fine staircasing simulations.

CONCLUSIONS

The major new contributions can be summarized as follows:

• New conformal FDTD updating scheme:
- less memory consumption than current state-of-the-art

model proposed in [3]
- less multiplications per time step than model proposed

in [3]
- proven stability criteria

• Conformal Discretization:
- introducing a tolerance strip around the surface triangle,

the numerical difficulties of poorly shaped triangles are
solved

- in addition, there was no need to distinguish between
special tangential cases

- the speed was drastically enhanced using the scan
conversion technique throughout the (conformal)
discretization

The novel proposed and implemented conformal meshing
algorithms and the locally conformal FDTD scheme enable
improved spatial modeling and simulation of complex 3-D real-
world structures. They were validated on the basis of benchmark
examples as well as targeting complex industrial applications.

The new methods constitute a significant benefit and performance
increase for electromagnetics related applications in general and
for mobile communication and medicine in particular. With
them, CAD datasets from industrial environments can be imported
and reliably meshed within a few minutes. Moreover, the new
3-D conformal scheme demonstrated orders of magnitude in
reduction of computational runtime and memory requirements,
by maintaining the same order of accuracy.

(1)

(2)

Because of the proven stability criteria, the conformal FDTD
was always stable and the time step was chosen as 31% of the
staircasing time step. PML was used as absorbing boundary
condition and the grid resolution varies from 0.017 to 13.1
million cells (Mcells). The structure is excited at the center rod
with a voltage source.

The return loss of the PCS antenna in figure 12 shows the
excellent performance of the coarse conformal FDTD simulation
compared to the staircasing ones with different resolutions. The
gain in simulation time is tremendous as well as the savings of
memory. Instead of 3 minutes simulation time in the conform
run it took over 9 hours for the finest staircasing simulation and
the computational cell requirements are almost 800 times larger.

Figure 11:  The conformal and staircasing discretization of the PCS/GPS dual-
band antenna. All objects are PEC. The grid consists of 52x53x23 cells.
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